

Session 1a

Principles of statistics (1) – Summary measures and *P*-values

Outline

- Summarising data
- The role of chance
- Interpreting *P*-values
- Commonly used hypothesis tests
- Limitations of *P*-values

Summarising data

Why do we summarise data?

- To get a feel for the data
- To decide on the types of variables that we have and their distributions
- To check for possible errors, outliers or missing values
- To start to appreciate the relationships between pairs of variables
- To allow others to assess comparability with their own population

Types of data variables

Qualitative -(categorical)

Binary: 2 categories (eg. dead/alive)

Nominal: >2 categories, no ordering to groups (eg. ethnicity)

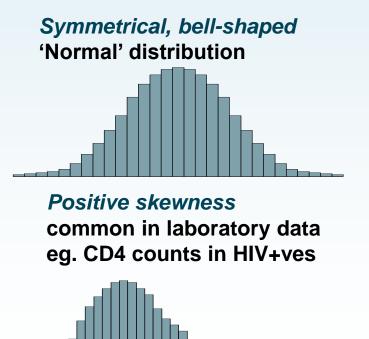
Ordinal: >2 categories, some inherent ordering (eq. severity of pain, age group)

(numerical)

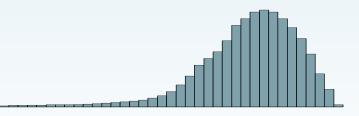
Quantitative - Discrete: Can take only certain values in a range (eg. quality of life score, no. of sexual partners in a year)

> Continuous: Can take any value in a range (eg. height, weight, CD4 count)

Other types - Ranks, percentages, rates, ratios, scores


Displaying the data graphically

- One categorical variable
 - Pie chart, bar/column chart
- One numerical variable
 - Dot plot, histogram, box plot, stem-and-whisker plot
- Two categorical variables
 - Clustered/segmented bar/column charts
- Two numerical variables
 - Scatter plot



The distributions of quantitative data

The choice of summary statistics and the most appropriate analytical method will depend on the shape of the distribution

Negative skewness

Uniform distribution
Equal probability of taking
any value in the range

Summarising quantitative data

- We usually quote two measures:
 - A measure of the average value
 - A measure of how variable the data are

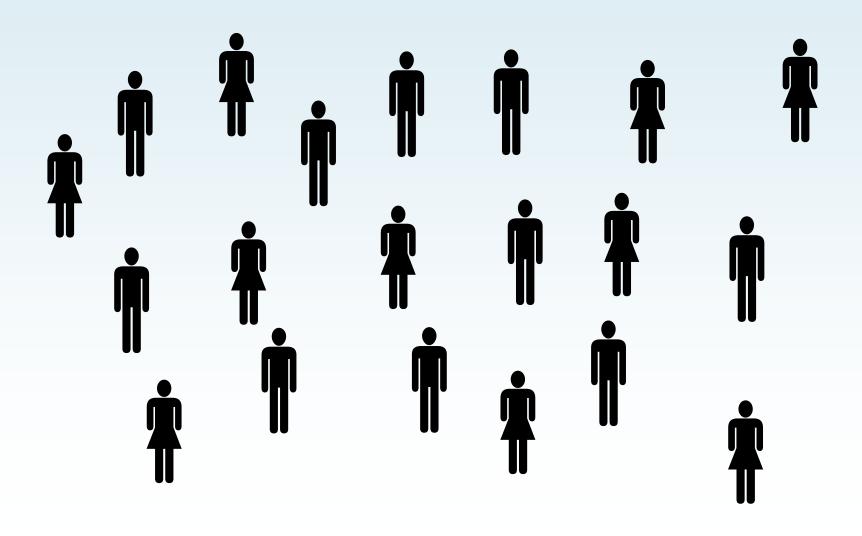
Type of data	Average	Variability
Numerical, normally distributed	Mean	SD/variance
Numerical, skewed	Median	Range/IQR
Categorical, nominal	Mode	No suitable
Categorical, ordinal, only a few categories	Mode	measure – give % in
Categorical, ordinal, reasonable number of categories	Median	each category

The role of chance

Hypothesis tests – background

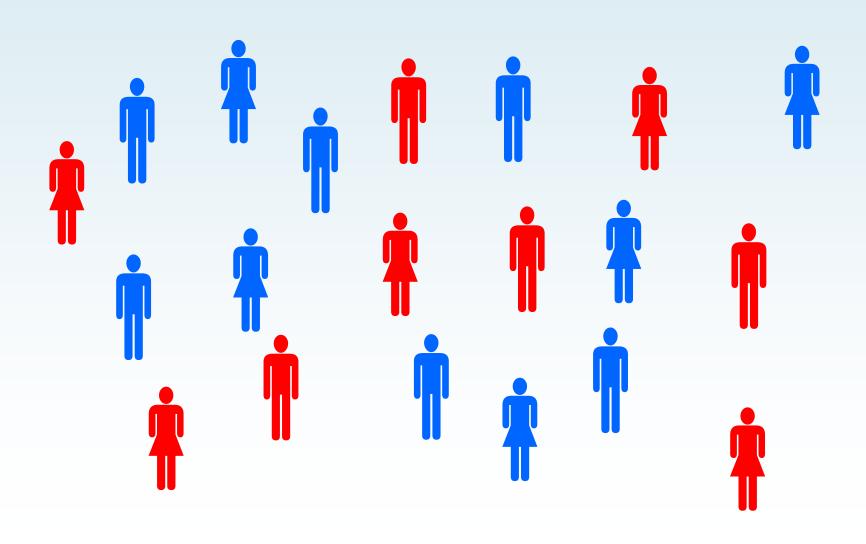
- Presentations of data in the medical world are littered with p-values - 'P<0.05' is thought to be a magical phrase, guaranteed to ensure that your paper will be published
- But what do these P-values really tell us, and is a P-value <0.05 really that important?

P-values – what do they tell us?

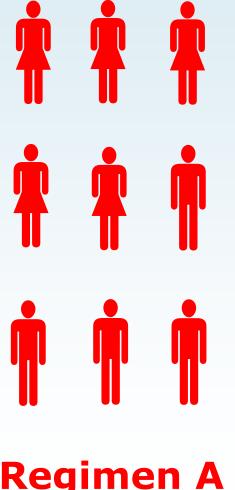


Example – baseline imbalance in trials

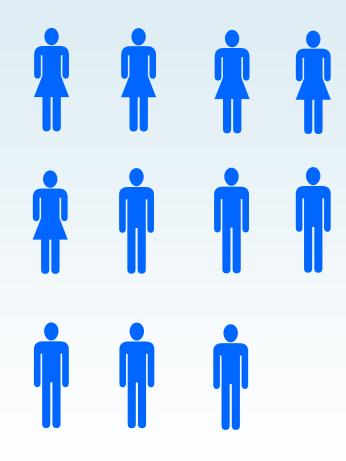
- Imagine 20 participants in a trial, 50% of whom are female
- We randomise the group in a 1:1 manner to receive one of two regimens, A (red) or B (blue)
- We should end up with approximately 10 patients allocated to regimen A and 10 patients to regimen
- What happens in practice?



20 trial participants



20 trial participants



20 trial participants

Regimen A

Regimen B

	Regimen				
	A	A B			
Trial number	N	N (%) female	N	N (%) female	
1	9	5 (55.6)	11	5 (45.5)	

	Regimen				
	Α		В		
Trial number	N	N (%) female	N	N (%) female	
1	9	5 (55.6)	11	5 (45.5)	
2	10	5 (50.0)	10	5 (50.0)	
3	7	3 (42.9)	13	7 (53.8)	
4	15	7 (46.7)	5	3 (60.0)	
5	8	5 (62.5)	12	5 (41.7)	
6	8	4 (50.0)	12	6 (50.0)	
7	10	5 (50.0)	10	5 (50.0)	
8	10	6 (60.0)	10	4 (40.0)	
9	11	7 (63.6)	9	3 (33.3)	
10	10	3 (30.0)	10	7 (70.0)	

	Regimen			
	Α		В	
Trial number	N	N (%) female	N	N (%) female
1	9	5 (55.6)	11	5 (45.5)
2	10	5 (50.0)	10	5 (50.0)
3	7	3 (42.9)	13	7 (53.8)
4	15	7 (46.7)	5	3 (60.0)
5	8	5 (62.5)	12	5 (41.7)
6	8	4 (50.0)	12	6 (50.0)
7	10	5 (50.0)	10	5 (50.0)
8	10	6 (60.0)	10	4 (40.0)
9	11	7 (63.6)	9	3 (33.3)
10	10	3 (30.0)	10	7 (70.0)

	Regim	nen		
	Α		В	
Trial number	N	N (%) female	N	N (%) female
1	9	5 (55.6)	11	5 (45.5)
2	10	5 (50.0)	10	5 (50.0)
3	7	3 (42.9)	13	7 (53.8)
4	15	7 (46.7)	5	3 (60.0)
5	8	5 (62.5)	12	5 (41.7)
6	8	4 (50.0)	12	6 (50.0)
7	10	5 (50.0)	10	5 (50.0)
8	10	6 (60.0)	10	4 (40.0)
9	11	7 (63.6)	9	3 (33.3)
10	10	3 (30.0)	10	7 (70.0)

	Regimen				
	A		В		
Trial number	N	N (%) female	N	N (%) female	
1	54	28 (51.9)	46	22 (47.8)	
2	53	24 (45.3)	47	26 (55.3)	
3	61	30 (49.2)	39	20 (51.3)	
4	51	25 (49.0)	49	25 (51.0)	
5	57	29 (50.9)	43	21 (48.8)	
6	50	24 (48.0)	50	26 (52.0)	
7	51	22 (43.1)	49	28 (57.1)	
8	54	30 (55.6)	46	20 (43.5)	
9	57	28 (49.1)	43	22 (51.2)	
10	47	20 (42.6)	53	30 (56.6)	

The role of 'chance'

- So even if we randomly subdivide patients into two groups, their characteristics may be imbalanced
- The size of the imbalance generally gets smaller as the trial increases in size
- Random baseline covariate imbalance is not usually a problem in a trial (unless it is big) as statistical methods can deal with this
- However, if we are describing outcomes rather than baseline covariates, then there is more cause for concern

Trial participants - % viral load <50 cps/ml

	Regimen				
	Α		В		
Trial number	N	N (%) VL<50 copies/ml	N	N (%) VL<50 copies/ml	
1	54	28 (51.9)	46	22 (47.8)	
2	53	24 (45.3)	47	26 (55.3)	
3	61	30 (49.2)	39	20 (51.3)	
4	51	25 (49.0)	49	25 (51.0)	
5	57	29 (50.9)	43	21 (48.8)	
6	50	24 (48.0)	50	26 (52.0)	
7	51	22 (43.1)	49	28 (57.1)	
8	54	30 (55.6)	46	20 (43.5)	
9	57	28 (49.1)	43	22 (51.2)	
10	47	20 (42.6)	53	30 (56.6)	

Trial participants - % viral load <50 cps/ml

	Regin	nen			
	Α		В		
Trial number	N	N (%) VL<50 copies/ml	N	N (%) VL<50 copies/ml	
1	54	28 (51.9)	46	22 (47.8)	
2	53	24 (45.3)	47	26 (55.3)	
3	61	30 (49.2)	39	20 (51.3)	
4	51	25 (49.0)	49	25 (51.0)	
5	57	29 (50.9)	43	21 (48.8)	
6	50	24 (48.0)	50	26 (52.0)	
7	51	22 (43.1)	49	28 (57.1) 14% differen	ce in
8	54	30 (55.6)	46	20 (43.5) outcome	
9	57	28 (49.1)	43	22 (51.2)	
10	47	20 (42.6)	53	30 (56.6)	

What is the *P*-value?

- *P*-value: probability of obtaining an effect at least as big as that observed if the null hypothesis is true (i.e. there is no real effect)
- Large P-value results are consistent with chance variation
 - Insufficient evidence that effect is real
- Small P-value results are inconsistent with chance variation
 - Sufficient evidence that effect is real

What is large and what is small?

By convention:

P<0.05 - SMALL

P>0.05 - LARGE

Hypothesis testing - how do we obtain a *P*-value?

The general approach to hypothesis testing

- Start by defining two hypotheses:
 - Null hypothesis: There is no real difference in viral load response rates between the two regimens
 - Alternative hypothesis: There is a real difference in viral load response rates between the two regimens
- Conduct trial and collect data
- Use data from that trial to perform a hypothesis test (e.g. Chi-squared test, t-test, ANOVA)
- Obtain a P-value

Choosing the right hypothesis test

All statistical tests will generate a *P*-value - the choice of statistical test will be based on a number of factors, including:

- The hypotheses being studied
- The variables of particular interest
- The distribution of their values
- The number of individuals who will be included in the analysis
- The number of 'groups' being studied
- The relationship (if any) between these groups

Choosing the right hypothesis test

Tests that may be used (a small selection):

Comparing proportions

- Chi-squared test
- Chi-squared test for trend
- Fisher's exact test
- Relative risk
- Odds ratio

Comparing numbers

- Unpaired *t*-test
- Paired *t*-test
- Mann-Whitney U test
- ANOVA
- Kruskal-Wallis test

Example – the Chi-squared test

- Two groups
- Interested in whether the proportion of individuals with an outcome differs between these groups
- Measurement of interest is categorical
- Can draw up a table of responses in the groups
- Expected numbers in each cell of the table are
 >5

Example – Define hypotheses

We wish to know whether patients receiving a new treatment regimen (A) are more likely to achieve viral load suppression than those receiving standard-of-care (B)

Hypotheses:

 H_0 : There is no real difference in the proportion of patients with a VL \leq 50 copies/ml between those receiving regimen A and those receiving regimen B

 H_1 : There is a real difference in the proportion of patients with a $VL \leq 50$ copies/ml between those receiving regimen A and those receiving regimen B

Example – Collect data

	VL <u><</u> 50 copies/ml	VL >50 copies/ml	Total
Regimen	N (%)	N (%)	N (%)
A	28 (52)	26 (48)	54 (100)
В	22 (48)	24 (52)	46 (100)
Total	50 (50)	50 (50)	100 (100)

Example – Interpret *P*-value

- Computer output gives Chi-squared value of 0.04
- P-value associated with this test value = 0.84
- If there really was no difference in viral load response between the two groups, and we repeated the study 100 times, we would have observed a difference of this size (or greater) on 84 of the 100 occasions
- As P>0.05, there is insufficient evidence of a real difference in viral load response rates between the two regimens

Points to note

- We have not <u>proven</u> that the difference <u>was</u> due to chance, just that there was a reasonable probability that it <u>might have been</u>
- We can never prove the null hypothesis
- We take an 'innocent until proven guilty' approach

Limitation of *P*-values

- Although P-values are helpful in telling us which effects are likely to be real, they also suffer from limitations (see session 1b)
- An estimate of the size of the effect and its corresponding confidence interval provides complementary information
- The limitations of *P*-values, as well as the use of confidence intervals, will be studied in Session 1b