### **Liver Disease in HIV**

Sanjay Bhagani Royal Free Hospital/UCL London

### **Outline**

- Importance of liver disease in HIV
- Global burden of Viral Hepatitis and contribution to morbidity/mortality
- Drug-induced liver disease
- HBV
- HCV

Case-based discussion (Thursday pm)

# D:A:D: Liver-related death is a frequent cause of non-AIDS death in HIV-infected patients

D:A:D Study: Causes of death in n=49,734 HIV-infected patients followed 1999-2011



### Liver-related death and CD4 count



D.A.D study Gp. AIDS 2010: 24: 1537

Liver Disease in HIV-infected Patients multifactorial HIV Co-morbidity Opportunistic diseases treatment HIV treatment NNRTIS, PIS, NRTIS, INSTIS Hepatitis Entry inhibitors viruses Fatty Liver Disease Immune reconstitution Alcohol abuse/IVDU Pre-existing diseases

Sulkowski M. et al. Ann Intern Med. 2003;138:197-207 Guaraldi G et al Clin Infect Dis 2008 47(2): 250-257 Greub G et al. Lancet 2000;356:1800-1805

### Overlapping epidemics – co-infections









# HIV-associated Immune activation and liver disease



Mathurin et al., Hepatology 2000; 32:1008-1017; Paik et al., Hepatology 2003; 37:1043-1055; Balagopal et al., Gastroenterology 2008; 135:226-233..

### START liver fibrosis study (2014)

- Sub-study of 230 (4577) patients
- Baseline FibroScan, FIB-4, APRI
- 7.8% >F2 fibrosis by FibroScan (10% FIB-4, 8.6% APRI)
- Multivariate analysis
  - Significant Fibrosis associated with HIV RNA and ALT at baseline
  - Not associated with BMI or use of anti-lipid therapy

### Mechanisms of drug-related liver injury in HIVinfected patients

| Mechanism                                             |                                                                                                                       |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Metabolic host-mediated (intrinsic and idiosyncratic) | NNRTIs and PIs Usually 2-12 months after initiation Occurrence can vary by agent Dose-dependence for intrinsic damage |
| Hypersensitivity                                      | NVP>ABC>fosAPV Early, usually within 2-12 weeks Often associated with rash HLA-linked                                 |
| Mitochondrial toxicity                                | NRTIs<br>ddI>d4T>AZT>ABC=TDF=FTC/3TC                                                                                  |
| Immune reconstitution                                 | Chronic Hepatitis B Chronic HCV? Within first few months More common if low CD4 count/large rise                      |

### Non Cirrhotic Portal Hypertension

- Almost exclusively associated with didanosine (ddl) use
  - Related to duration of use
  - May present many years after discontinuation
- Histologically:
  - Nodular regenerative hyperplasia
  - Partial Nodular Transformation
  - Portal venopathy
  - May be normal
- Clinically: Portal hypertension
  - Variceal bleeding (Scourfield et al, IJSA 2011)
  - Ascites
- Association with SNPs in 5-nucloeotidase and xanthine oxidase (Vispo et al, CID 2013)
- ? Role of screening for ddl exposed patients

#### **Hepatic Safety Profile of ARVs**



After Soriano at al. AIDS 2008; 22: 1-13

## Associated Risk factors for hepatotoxicity of ART

- Hepatitis B and C co-infection
- Higher baseline ALT/AST levels
- Alcohol
- Older age
- Female gender
- High or low CD4 count
- Lower BMI
- Use of ddI, d4T, NVP, RTV (>200mg/day rather than at 'boosting' 100mg/day)

```
Rodriguez-Rosado et al. AIDS 1998;12:1256; Sulkowski et al. JAMA 2000;283:74.; Saves et al. AIDS 1999;13:F115; den Brinker et al. AIDS 2000;14:2895; Martínez et al. AIDS 2001;15:1261; Núñez et al. J AIDS 2001;27:426.
```

### Hepatotoxicity in HBV and HCV coinfected patients - mechanisms

- Immune restoration increase in CTL activity
- Direct hepatotoxicity increased susceptibility of viral infected hepatocytes to metabolites
- Altered cytokine milieu in the presence of viral hepatitis
  - Increased risk of liver inflammation
  - Down-regulation of Cyp450 mediated drug metabolism with advancing liver disease

#### **Global HBV**



Suraj Sharma, Manuel Carballo, Jordan J. Feld, Harry L.A. Janssen Journal of Hepatology, Volume 63, Issue 2, 2015, 515–522

# 4 Phases of Chronic HBV Infection

**Current Understanding of HBV Infection** 



Yim HJ, et al. Natural history of chronic hepatitis B virus infection: what we knew in 1981 and what we know in 2005. Hepatology. 2006;43:S173-S181. Copyright © 1999–2012 John Wiley & Sons, Inc. All Rights Reserved.

# Natural history of HBV infection – where does HIV co-infection fit in?



#### When do we need to Rx HBV?

Everybody with detectable HBV DNA?

Based on HBV DNA levels?

- Those with evidence of significant liver disease?
  - Based on abnormal ALTs?
  - Histological activity/Fibrosis scores?

### Level of HBV DNA (c/ml) at entry & progression to cirrhosis and risk of HCC

3582 HBsAg untreated asian carriers mean follow-up 11 yrs → 365 patients newly diagnosed with cirrhosis



<sup>\*</sup> Adjusted for age, sex, cigarette smoking, and alcohol consumption.

HBV-DNA viral load (> 10<sup>4</sup> cp/ml) strongest predictor of progression to cirrhosis independent of ALT and HBeAg status

HBV DNA and immune response = engine ALT/Histological Activity Index (inflammation) = train speed Fibrosis stage = distance from canyon



#### What does Rx aim to achieve?



# Three key inter-linked factors in the decision to treat

- Age
  - -<30yrs vs. >30yrs
  - FH of HCC
- Level of fibrosis/inflammation
  - Cirrhosis
  - F2+ fibrosis
  - Abnormal liver enzymes
- HBV DNA levels
  - ->20 000 IU/ml

#### ALGORITHM OF WHO RECOMMENDATIONS ON THE MANAGEMENT OF PERSONS WITH CHRONIC HEPATITIS B INFECTION<sup>2</sup>



### **New Guidelines 2016**



## 13 years of tenofovir (TDF) in co-infected patients



Meta-analysis 23 studies 550 HIV-HBV patients on TDF

Increasing suppression over follow-up in majority

Little evidence of resistance

## Lack of access to routine testing and monitoring

#### World Hepatitis Alliance/WHO global survey 2009:

Testing for HBV and/or HCV

- >50% people live in countries with no free testing
- Only 4% low-income countries have ready access to testing

|         | Testing accessible to >50% | Testing anonymous | Free to all | Free to some |
|---------|----------------------------|-------------------|-------------|--------------|
| Africa  | 20%                        | 40%               | 10%         | 27%          |
| SE Asia | 29%                        | 29%               | 29%         | 14%          |
| Europe  | 86%                        | 55%               | 27%         | 55%          |

### Lack of access to routine testing and monitoring

- Limited access to HBsAg testing means many co-infected individuals not identified pre-ART
- Negative

  Negative

  Positive

  Test Bar

  Control Bar
- Little understanding of natural history of co-infection in RLS



Liver disease fibrosis assessment not readily available



 Widespread absence of virological monitoring by HBV DNA testing

### Although TDF use is improving, far from universal

Trends in d4T, AZT and TDF use in first-line antiretroviral therapy regimens for adults in low- and middle-income countries, 2006–2011



Source: Use of antiretroviral medicines by December 2011 based on the WHO survey in low- and middle-income countries (77).

Global update on HIV treatment 2013. WHO

Tanzania: 3% HIV and 17% HIV/HBV on TDF regimen Hawkins IAC 2012

Liver Fibrosis by Transient Elastography and Virologic Outcomes After Introduction of Tenofovir in Lamivudine-Experienced Adults With HIV and Hepatitis B Virus Coinfection in Ghana



Stockdale, et al. Clin Infect Dis; 2015

#### Efficacy is never 100%



## Patterns of suboptimal response to TDF based therapy in HIV-HBV

- •165 HIV -HBV coinfected individuals followed for median of 4 years
- HBV DNA detectable in 20% study visits



Persistent viraemia (n=25)



Viral rebound (n=13)



Blipper (n=24)

## Factors associated with detectable HBV DNA

- On truvada based therapy at least 6 months
- Undetectable HIV RNA < 400 c/ml</li>

|                                | OR    | 95% CI      | p-value  |
|--------------------------------|-------|-------------|----------|
| Age (per 10 yrs)               | 0.90  | 0.48, 1.69  | 0.74     |
| HBeAg positive                 | 12.06 | 3.73, 38.98 | < 0.0001 |
| <95% adherent                  | 2.52  | 1.16, 5.48  | 0.02     |
| HAART <2 yrs                   | 2.64  | 1.06, 6.54  | 0.04     |
| $CD4 < 200 \text{ cells/mm}^3$ | 2.47  | 1.06, 5.73  | 0.04     |

Long term adherence is always a challenge

#### **Drivers of HBV viraemia on TDF?**

- Neither genotypic or phenotypic resistance have been definitively described
- Replication or reservoir release?



Virological (UDPS, SGA) and immunological studies may give insight

# Prophylaxis Effect of TDF in Prevention of HBV Acquisition in HIV (+) Patients

- HIV infected; HBV uninfected MSM
- Patients were serologically evaluated for HBV infection stratified by NRTI-ART

#### Frequency and Hazard Ratio of HBV Incident Infection

| ART                               | Observation Period<br>(Person-Years) | Incident<br>Infection | HR (95% CI)       | P-Value |
|-----------------------------------|--------------------------------------|-----------------------|-------------------|---------|
| No ART                            | 446                                  | 30                    | 1                 |         |
| Other ART                         | 114                                  | 6                     | .924 (.381-2.239) | .861    |
| ART containing (LAM, TDF, or FTC) | 1047                                 | 7                     | .113 (1.049261)   | <.001   |
| LAM-ART                           | 814                                  | 7                     |                   |         |
| TDF-ART                           | 233                                  | 0                     |                   |         |

TDF containing ART resulted in zero HBV infections<sup>1</sup>

Statistically longer HBV-free survival with TDF compared to 3TC or no treatment  $(p = 0.004 \text{ and } 0.001)^2$ 

<sup>1.</sup> Gatanama, H, et al., CID 2013:56 June 15

<sup>43</sup> 

# Renal impairment with TDF – watch this space....

 240 patients with a 3year-time follow-up, normal eGFR at baseline1



Figure 1: MDRD clearance over time

 >400 HIV+ patients receiving TDF



#### **Strategies when TDF is contra-indicated?**

- Reduce dose TDF
- Switch to entecavir (caution if LAM-R)
- Adefovir plus entecavir (?kidney disease)
- Peg-interferon (?advanced liver disease)

Tenfovir Alafenamide (TAF)

#### **TAF** in co-infected patients

(Galant et al, IAS 2015 WELBPE13)



#### **Burden of HCV in HIV populations**



#### HIV/HCV — double-trouble for the liver



Figure 1 | Driving factors underlying liver disease pathogenesis in HCV–HIV co-infection. HIV infection leads to an impaired immune response against HCV, increased HCV replication, hepatic inflammation and apoptosis, increased microbial translocation from the gastrointestinal tract and increased fibrosis.

Chen J Nat Rev Gastroenterol Hep 2014 doi:10.1038/nrgastro.2014.17

### Faster progression even when controlling for alcohol and other co-morbidities



Figure 3. Liver fibrosis and age among persons coinfected with HIV and HCV (dashed line) and those with only HCV (solid line)

#### HIV/HCV – a contribution to multiple organ dysfunction



#### Overall and Liver-related Mortality - effect of HAART

#### A) Overall-Mortality



#### Patients under observation:

HAART-group: 93 79 33 - - - - ART-group: 55 46 30 15 9 1 Untreated-group: 13794 49 37 32 27

#### **B)** Liver-related-Mortality

Patients under observation:

Untreated-group: 13794

93

55

79

46

49

33

30

37

15

32

9

27

1

**HAART-group:** 

ART-group:



#### **HCV/HIV SVR24 with pegIFN and RIBAVIRIN**



Adapted from: Fried et al, NEJM 2002;347:975-982, Torriani et al, NEJM 2004;351:438-50, Chung R, et al, NEJM 2004;351:451-9 Carrat F, et al, JAMA 2004;292:2839-42, Laguno et al, AIDS 2004;18:F27-F36, Nunez et al, JAIDS 2007;45:439-44

# SVR in HIV/HCV co-infected patients with mild Fibrosis

A total of 695 HIV/HCV-co-infected patients were treated with IFN/RBV after a median follow-up of 4.9 y ∋ars. 274 patients ε chieved an SVR



The achievement of an SVR after interferon-ribavirin therapy in patients co-infected with HIV/HCV and with mild Fibrosis reduces liver-related complications and mortality

#### What are DAAs?



<sup>\*</sup>Representative list modified from CCO – updated 2016.

# Not All Direct-Acting Antivirals are Created Equal

| Characteristic        | Protease<br>Inhibitor* | Protease<br>Inhibitor** | NS5A<br>Inhibitor | Nuc<br>Polymerase<br>Inhibitor | Non-Nuc<br>Polymerase<br>Inhibitor |
|-----------------------|------------------------|-------------------------|-------------------|--------------------------------|------------------------------------|
| Resistance profile    |                        |                         |                   |                                |                                    |
| Pangenotypic efficacy |                        |                         |                   |                                |                                    |
| Antiviral potency     |                        |                         |                   |                                |                                    |
| Adverse events        |                        |                         |                   |                                |                                    |



<sup>\*</sup>First generation. \*\*Second generation.

#### Do HIV+ respond differently to mono-infected patients?



### DDIs between HCV drugs and HIV

|                            |                         | DCV      | LED/<br>SOF | OBV/<br>PTV/r | OBV/<br>PTV/r<br>+DSV | SMV | SOF |
|----------------------------|-------------------------|----------|-------------|---------------|-----------------------|-----|-----|
| Entry/Integrase Inhibitors |                         | <u> </u> |             |               |                       |     |     |
|                            | Dolutegravir            | •        | •           | •             | •                     | •   | •   |
|                            | Elvitegravir/cobicistat |          |             | •             | •                     | •   | •   |
|                            | Maraviroc               | •        |             |               |                       | •   | •   |
|                            | Raltegravir             | •        | •           | •             | •                     | •   | •   |
| NNRTIs                     | Delavirdine             |          | •           |               |                       | •   | •   |
|                            | Efavirenz               |          |             | •             | •                     | •   | •   |
|                            | Etravirine              |          | •           | •             | •                     | •   | •   |
|                            | Nevirapine              |          | •           | •             | •                     | •   | •   |
|                            | Rilpivirine             | •        | •           |               |                       | •   | •   |
| NRTIs                      | Abacavir                | •        | •           | •             | •                     | •   | •   |
|                            | Didanosine              | •        | •           | •             | •                     | •   | •   |
|                            | Emtricitabine           | •        | •           | •             | •                     | •   | •   |
|                            | Lamivudine              | •        | •           | •             | •                     | •   | •   |
|                            | Stavudine               | •        | •           | •             | •                     | •   | •   |
|                            | Tenofovir               | •        |             | •             | •                     | •   | •   |
|                            | Zidovudine              | •        | •           | •             | •                     | •   | •   |
| Pls                        | Atazanavir              |          | •           |               |                       | •   | •   |
|                            | Darunavir               | •        | •           |               |                       | •   | •   |
|                            | Fosamprenavir           |          | •           |               |                       | •   | •   |
|                            | Indinavir               |          | •           | •             | •                     | •   | •   |
|                            | Lopinavir               | •        | •           | •             | •                     | •   | •   |
|                            | Nelfinavir              | •        | •           |               |                       | •   | •   |
|                            | Ritonavir               |          | •           | •             | •                     | •   | •   |
|                            | Saquinavir              |          | •           | •             | •                     | •   | •   |
|                            | Tipranavir              |          | •           | •             | •                     | •   | •   |

#### New online EASL HCV recommendations



Same treatment regimens can be used in HIV/HCV patients as in patients without HIV infection, as the virological results of therapy are identical (A1)

## EACS HCV recommendations – treatment combination options

| IFN-free HCV | Treatment Options     |                                                              |                                                                       |                                              |  |  |
|--------------|-----------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|--|--|
|              |                       | Treatment duration & ribavirinusage                          |                                                                       |                                              |  |  |
| нсv gt       | Treatmentregimen      | Non-cirrhotic                                                | Compensated cirrhotic                                                 | Decompensated<br>cirrhotics CTP<br>class B/C |  |  |
| 1 & 4        | SOF + SMP + RBV       | 12 weeks without RBV                                         | 12 weeks with<br>RBV or 24 weeks<br>without <sub>RBV</sub> (i)        | Not recommended                              |  |  |
|              | SOF/LDV + RBV         | 12 weeks without RBV                                         | 12 weeks with RBV or 24 weeks without RBV in cirrhotics or pre-/post- |                                              |  |  |
|              | SOF + DCV + RBV       | 12 weeks without RBV                                         | 12 weeks with RBV or 24 weeks without RBV in cirrhotics or pre-/post- |                                              |  |  |
|              | OBV/PTV/r + DSV       | 12 weeks in GT 1b                                            | Not Recommended                                                       |                                              |  |  |
|              | OBV/PTV/r + DSV + RBV | 12 weeks in GT 1a                                            | 12 weeks in GT<br>1b 24 weeks in                                      | Not recommended                              |  |  |
|              | OBV/PTV/r + RBV       | 12 weeks in GT 4                                             | 24 weeks in GT 4                                                      | Not recommended                              |  |  |
| 2            | SOF + DCV + RBV       | 12 weeks without RBV                                         | 12 weeks without RBV 12 weeks with                                    |                                              |  |  |
|              | SOF + RBV             | 12 weeks                                                     |                                                                       |                                              |  |  |
| 3            | SOF + PEG-IFN/RBV     | Not recommended                                              | 12 weeks in persons eligible                                          | Not recommended                              |  |  |
|              | SOF + RBV             | 24 weeks                                                     | Not recommended                                                       |                                              |  |  |
|              | SOF + DCV + RBV(III)  | 12 weeks without RBV                                         | 24 weeks with RBV                                                     |                                              |  |  |
| 5            | SOF/LDV               | 12 weeks without RBV                                         | 12 weeks without RBV                                                  |                                              |  |  |
| 6            |                       | data on DAAs in HCV GT 6<br>be treated similarly to HCV GT 1 |                                                                       |                                              |  |  |

# Are there remaining 'unresolved' issues with HCV?

- Is 'shorter' therapy possible for co-infected patients?
- Are there 'difficult to treat' groups?
  - G3 few options currently, relatively poor responses
- Is it ever 'too late' to treat HCV?
  - ESLD Rx vs. Transplant followed by Rx
- Will TasP be feasible?

### ALLY-2: DCV + SOF in GT1–6 patients with HIV/HCV co-infection



<sup>†</sup> standard DCV dose of 60 mg QD, dose adjusted for concomitant cART (30 mg with ritonavir-boosted PIs, 90 mg with NNRTIs except rilpivirine). NNRTI = non-nucleoside reverse transcriptase inhibitor.

#### Real-world data confirm clinical trial results: 8 weeks in GT-1 patients without cirrhosis and VL< 6 millions IU/ml





\*Post hoc analysis \*\* Per Protocol \*\*\* ITT analysis

# HIGH SVR RATES WITH ABT-493 + ABT-530 CO-ADMINISTERED FOR 8 WEEKS IN NON-CIRRHOTIC PATIENTS WITH HCV GENOTYPE 3 INFECTION

Andrew J Muir<sup>1</sup>, Simone Strasser<sup>2</sup>, Stanley Wang<sup>3</sup>, Stephen Shafran<sup>4</sup>, Maurizio Bonacini<sup>5</sup>, Paul Y Kwo<sup>6</sup>, David L Wyles<sup>7</sup>, Edward Gane<sup>8</sup>, Sandra S Lovell<sup>3</sup>, Chih-Wei Lin<sup>3</sup>, Teresa I Ng<sup>3</sup>, Jens Kort<sup>3</sup>, Federico J Mensa<sup>3</sup>

<sup>1</sup>Duke University School of Medicine, Durham, NC, USA; <sup>2</sup>AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown NSW, Australia; <sup>3</sup>AbbVie Inc., North Chicago, Illinois, United States; <sup>4</sup>University of Alberta Hospital, Edmonton, AB, Canada; <sup>5</sup>California Pacific Medical Center, San Francisco, CA, USA; <sup>6</sup>Indiana University School of Medicine, Indianapolis, IN, USA; <sup>7</sup>University of California San Diego, La Jolla, CA, USA; <sup>8</sup>University of Auckland, Auckland, New Zealand

51st Annual Meeting of the European Association for the Study of the Liver

• Barcelona, Spain •

16 April 2016



#### **SVR12** Analysis



mITT SVR12 rate excludes non-virologic failures

No virologic failures

1 patient withdrew consent after treatment week 6 due to intolerance of blood draws and had an undetectable HCV RNA at the time of discontinuation

# The ASTRAL Phase 3 Program (N=1408)

ASTRAL-1 GT 1, 2, 4–6 TN, TE NC, CC

ASTRAL-2 GT 2 TN, TE NC, CC

ASTRAL-3 GT 3 TN, TE NC, CC ASTRAL-4 GT 1–6 TN, TE CTP-B Cirrhosis ASTRAL-5
GT 1-4
TN, TE
NC, CC
HIV/HCV Co-Infection

**SOF/VEL** 

Wk 12

Wk 0

n=106





#### Primary endpoints

- SVR12
- Discontinuations due to AEs

### Integrated Efficacy: SVR12



#### **Treatment As Prevention in HIV/HCV**



N Martin, et al 2015 (manuscript submitted)

#### **Conclusions**

- Liver disease is an important cause of morbidity and mortality in HIV+
- Key issues = cART, HBV, HCV and lifestyle
- HBV key issues diagnosis and management
- HCV
  - The era of DAA based therapy has arrived
  - IFN-sparing and IFN-free therapy a reality
  - Responses in HIV+ similar to HIV-
  - Beware DDIs
- Still a 'Special Population' aggressive, multi-system disease, urgent need of Rx
- Need for improved cascade of care and access to Rx