

Developing an analysis plan

Outline of Session

- A real-life example
- Consideration of biases and limitations
- The stages of an analysis plan

Outline of Session

- A real-life example
- Consideration of biases and limitations
- The stages of an analysis plan

Example – UK CHIC Study

- Cohort study which collates data on HIV-positive individuals accessing care in the UK
- Data are those collected in routine HIV care: CD4 counts, HIV viral load, ART, basic demographics
- Because data are collected in advance, important to be aware of potential limitations and be pragmatic
- UK CHIC was set up and approved for research purposes and data are pseudonomysed so informed consent not required

The idea

- Approached by clinician at a London-based HIV clinic
- Interested in whether treatment toxicities were more likely to occur in those starting cART with high CD4 counts
- Secondary end-point HPTN 052
- START yet to report
- Would it be possible to investigate this using the routine clinic data collected through UK CHIC?

The Research Question

Do ART-naïve HIV-positive adults initiating cART with CD4 counts above 350 cells/mm³ experience a higher rate of laboratory-defined adverse events on cART than those initiating cART with CD4 counts of 350 cells/mm³ and below?

Outline of Session

- A real-life example
- Consideration of biases and limitations
- The stages of an analysis plan

 Must fully consider potential biases and limitations of your study including:

- Must fully consider potential biases and limitations of your study including:
 - Confounding
 - Missing data
 - Attrition bias
 - Observer bias
 - Survivorship bias
 - Lead-time bias
 - Using routine data

- Must fully consider potential biases and limitations of your study including:
 - Confounding
 - Missing data
 - Attrition bias
 - Observer bias
 - Survivorship bias
 - Lead-time bias
 - Using routine data

Confounding

- Who starts cART with high CD4 counts in routine practice?
- Likely to differ from those starting cART below 350 cells/mm³ threshold
- Do we collect data on important confounders?
- Can we adjust for these in our analyses?
- Unmeasured confounding

		CD4 count at start of ART (cells/mm ³)			
		<u><</u> 350	351-499	<u>></u> 500	
Sex, n (%)	Male	6147 (78.2)	958 (87.2)	406 (90.8)	
Ethnicity, n (%)	White	4586 (58.4)	787 (71.6)	334 (74.7)	
	Black African	1861 (23.7)	131 (11.9)	42 (9.4)	
	Black other	404 (5.1)	52 (4.7)	17 (3.8)	
	Other/unknown	1009 (12.8)	129 (11.7)	54 (12.1)	
Mode of HIV acquisition, n (%)	Sex between men	4518 (57.5)	801 (72.9)	347 (77.6)	
	Heterosexual	2739 (34.9)	212 (19.3)	68 (15.2)	
	Other/unknown	603 (7.7)	86 (7.8)	32 (7.2)	
Regimen type, n (%)	2 NRTI + PI (/r)	1893 (24.1)	311 (28.3)	186 (41.6)	
	2 NRTI + NNRTI	5559 (70.7)	718 (65.3)	236 (52.8)	
	≥ 3 NRTI	173 (2.2)	22 (2.0)	8 (1.8)	
	Other Combination	235 (3.0)	48 (4.4)	17 (3.8)	

Missing data

- Need CD4 count at cART start
- Censor patient follow-up when lost to follow-up

Months before cART started

Months before cART started

Infrequent monitoring

- Laboratory tests not performed at regular intervals in all patients
- More likely to have a test if sick or displaying symptoms

Outline of Session

- A real-life example
- Consideration of biases and limitations
- The stages of an analysis plan

Stages of an analysis plan

Descriptive analyses

- Get to know your data!
- Identify differences in exposure groups and potential confounders

Exploratory analyses

- Not your main end-point
- Provide some insight/aids interpretation of main results

Main analysis

- Analysis of primary end-point
- Adjusting for confounders (regression models)

Sensitivity and sub-group analyses

Are methods valid?

Stages of an analysis plan

Descriptive analyses

- Get to know your data!
- Identify differences in exposure groups and potential confounders

Exploratory analyses

- Not your main end-point
- Provide some insight/aids interpretation of main results

Main analysis

- Analysis of primary end-point
- Adjusting for confounders (regression models)

Sensitivity and sub-group analyses

Are methods valid?

- 1. Data checks
- 2. Patient flow through study
- 3. Number of people with and without exposure of interest
- 4. Describe baseline demographic and clinical characteristics
 - According to exposure of interest
 - Appropriate univariate tests
- 5. Study follow-up
- 6. Outcome

Data checks

Age at cART start

Log₁₀ VL at cART start

Patient flow-chart through study

Baseline characteristics

		CD4 count at start of ART (cells/mm³)			P-value
		<u><</u> 350	351-499	<u>></u> 500	
Sex, n (%)	Male	6147 (78.2)	958 (87.2)	406 (90.8)	<0.001
Ethnicity, n (%)	White	4586 (58.4)	787 (71.6)	334 (74.7)	<0.001
	Black African	1861 (23.7)	131 (11.9)	42 (9.4)	
	Black other	404 (5.1)	52 (4.7)	17 (3.8)	
	Other/unknown	1009 (12.8)	129 (11.7)	54 (12.1)	
Mode of HIV acquisition, n (%)	Sex between men	4518 (57.5)	801 (72.9)	347 (77.6)	<0.001
	Heterosexual	2739 (34.9)	212 (19.3)	68 (15.2)	
	Other/unknown	603 (7.7)	86 (7.8)	32 (7.2)	
Regimen type, n (%)	2 NRTI + PI (/r)	1893 (24.1)	311 (28.3)	186 (41.6)	<0.001
	2 NRTI + NNRTI	5559 (70.7)	718 (65.3)	236 (52.8)	
	<u>></u> 3 NRTI	173 (2.2)	22 (2.0)	8 (1.8)	
	Other Combination	235 (3.0)	48 (4.4)	17 (3.8)	

Patient follow-up

		CD4 count at start of ART (cells/mm³)			
		<u><</u> 350	351-499	<u>></u> 500	
Patient follow up, years	Sum	24379.8	2318.6	922.2	
	Median (IQR)	2.5 (0.0, 11)	1.4 (0.0, 10.6)	1.0 (0.0, 10.6)	
Average number of laboratory tests/ year	Median (IQR)	2 (0,3)	2 (0,3)	3 (0,5)	

Outcome

Baseline CD4 count,	N	Number of	%	Rate /100 person
cells/mm³		LDAE		years
<u><</u> 350	7860	1094	13.9	4.5 (4.2, 4.8)
351-499	1099	113	10.3	4.9 (4.0, 5.8)
<u>></u> 500	447	76	17.0	8.2 (6.4, 10.1)

Stages of an analysis plan

Descriptive analyses

- Get to know your data!
- Identify differences in exposure groups and potential confounders

Exploratory analyses

- Not your main end-point
- Provide some insight/aids interpretation of main results

Main analysis

- Analysis of primary end-point
- Adjusting for confounders (regression models)

Sensitivity and sub-group analyses

Are methods valid?

Exploratory analyses

- Aware of large limitation reasons for starting cART with high CD4 counts not known
- Undertook range of preliminary analyses to understand differences between 3 CD4 count groups:
 - 1. Predictors of starting cART at high CD4 count
 - 2. How was CD4 count associated with following outcomes?
 - Virological suppression & rebound
 - Treatment switching
 - Discontinuation of cART

Exploratory analyses

Kaplan-Meier graph of time to discontinuation of cART, according to CD4 count at start of cART

Stages of an analysis plan

Descriptive analyses

- Get to know your data!
- Identify differences in exposure groups and potential confounders

Exploratory analyses

- Not your main end-point
- Provide some insight/aids interpretation of main results

Main analysis

- Analysis of primary end-point
- Adjusting for confounders (regression models)

Sensitivity and sub-group analyses

Are methods valid?

Main analysis

- Should answer research question
- Provide estimates that are adjusted for measured confounders (regression models)
- Potential confounders:
 - Hepatitis B or Hepatitis C co-infection
 - ART regimen
 - Demographics (sex, ethnicity, exposure)

Main analysis

- Should answer research question
- Provide estimates that are adjusted for measured confounders (regression models)

Stages of an analysis plan

Descriptive analyses

- Get to know your data!
- Identify differences in exposure groups and potential confounders

Exploratory analyses

- Not your main end-point
- Provide some insight/aids interpretation of main results

Main analysis

- Analysis of primary end-point
- Adjusting for confounders (regression models)

Sensitivity and sub-group analyses

Are methods valid?

Sensitivity/sub-group analyses

If we change variable definitions, do our conclusions remain unchanged?

- LDAE grouped by type (LFTS, renal function, blood, other) and analysed separately
- Considered absolute change in laboratory measures

If we change the population studied, do our conclusions remain unchanged?

Excluded those with HBV co-infection at cART start

Sensitivity/sub-group analyses

Relative rate (95% CI) of <u>liver-related</u> LDAE according to CD4 count at start of ART

Relative rate (95% CI) of <u>blood-related</u> LDAE according to CD4 count at start of ART

Summary

- It is important to consider potential biases and limitations of your study before planning an analysis
- An analysis should be planned in advance of conducting the study
- There are four main stages of an analysis plan: descriptive, exploratory, main and sub-group and sensitivity analyses
- Even if you aren't conducting analyses, important to get to know your data and understand analysis plan