Liver Disease in HIV

Sanjay Bhagani Royal Free Hospital/UCL London

Disclosures

- Grants/travel support/speaker fees
 - Abbvie
 - Gilead
 - ViiV

Outline

- Importance of liver disease in HIV
- Global burden of Viral Hepatitis and contribution to morbidity/mortality
- Drug-induced liver disease
- HBV
- HCV
- Non-alcoholic Fatty Liver Disease (NAFLD)
- Case-based discussion (Sunday pm)

Cause of Death in the London HIV **cohort - 2016**

Liver-related death and CD4 count

D.A.D study Gp. AIDS 2010: 24: 1537

Liver Disease in HIV-infected Patients - multifactorial

Sulkowski M. et al. Ann Intern Med. 2003;138:197-207 Guaraldi G et al Clin Infect Dis 2008 47(2): 250-257

Greub G et al. Lancet 2000;356:1800-1805

Overlapping epidemics – co-infections

HIV-associated Immune activation and liver disease

Mathurin et al., Hepatology 2000; 32:1008-1017; Paik et al., Hepatology 2003; 37:1043-1055; Balagopal et al., Gastroenterology 2008; 135:226-233..

START liver fibrosis study (2014)

- Sub-study of 230 (4577) patients
- Baseline FibroScan, FIB-4, APRI
- 7.8% >F2 fibrosis by FibroScan (10% FIB-4, 8.6% APRI)
- Multivariate analysis
 - Significant Fibrosis associated with HIV RNA and ALT at baseline
 - Not associated with BMI or use of anti-lipid therapy

Defining Hepatotoxicity

Mechanisms of drug-related liver injury in HIVinfected patients

Mechanism	
Metabolic host-mediated (intrinsic and idiosyncratic)	NNRTIs and PIs Usually 2-12 months after initiation Occurrence can vary by agent Dose-dependence for intrinsic damage
Hypersensitivity	NVP>ABC>fosAPV Early, usually within 2-12 weeks Often associated with rash HLA-linked
Mitochondrial toxicity	NRTIs ddI>d4T>AZT>ABC=TDF=FTC/3TC
Immune reconstitution	Chronic Hepatitis B Chronic HCV? Within first few months More common if low CD4 count/large rise

Hepatic Safety Profile of ARVs

After Soriano at al. AIDS 2008; 22: 1-13

Hepatotoxicity commoner in HBV and HCV co-infected patients - mechanisms

- Immune restoration increase in CTL activity
- Direct hepatotoxicity increased susceptibility of viral infected hepatocytes to metabolites
- Altered cytokine milieu in the presence of viral hepatitis
 - Increased risk of liver inflammation
 - Down-regulation of Cyp450 mediated drug metabolism with advancing liver disease

GLOBAL STATUS OF HEPATITIS B

Global distribution of HBV Genotypes

4 Phases of Chronic HBV Infection

Current Understanding of HBV Infection

Yim HJ, et al. Natural history of chronic hepatitis B virus infection: what we knew in 1981 and what we know in 2005. Hepatology. 2006;43:S173-S181. Copyright © 1999–2012 John Wiley & Sons, Inc. All Rights Reserved.

Natural history of HBV infection – where does HIV co-infection fit in?

Do we really need all this complexity?

	HBeAg positive		HBeAg negative		
	Chronic infection	Chronic hepatitis	Chronic infection	Chronic hepatitis	
HBsAg	High	High/intermediate	Low	Intermediate	
HBeAg	Positive	Positive	Negative	Negative	
HBV DNA	>10 ⁷ IU/ml	10⁴-10 ⁷ IU/ml	<2,000 IU/ml°°	>2,000 IU/ml	
ALT	Normal	Elevated	Normal	Elevated*	
Liver disease	None/minimal	Moderate/severe	None	Moderate/severe	
Old terminology	Immune tolerant	Immune reactive HBeAg positive	Inactive carrier	HBeAg negative chronic hepatitis	

When do we need to Rx HBV?

Everybody with detectable HBV DNA?

Based on HBV DNA levels?

- Those with evidence of significant liver disease?
 - Based on abnormal ALTs?
 - Histological activity/Fibrosis scores?

Level of HBV DNA (c/ml) at entry & progression to cirrhosis and risk of HCC

3582 HBsAg untreated asian carriers mean follow-up 11 yrs → 365 patients newly diagnosed with cirrhosis

^{*} Adjusted for age, sex, cigarette smoking, and alcohol consumption.

HBV-DNA viral load (> 10⁴ cp/ml) strongest predictor of progression to cirrhosis independent of ALT and HBeAg status

What does Rx aim to achieve?

Three key inter-linked factors in the decision to treat

- Age
 - -<30yrs vs. >30yrs
 - FH of HCC
- Level of fibrosis/inflammation
 - Cirrhosis
 - F2+ fibrosis
 - Abnormal liver enzymes
- HBV DNA levels
 - ->20 000 IU/ml

ALGORITHM OF WHO RECOMMENDATIONS ON THE MANAGEMENT OF PERSONS WITH CHRONIC HEPATITIS B INFECTION²

EACS Guidelines 2018

Although TDF use is improving, far from universal

Trends in d4T, AZT and TDF use in first-line antiretroviral therapy regimens for adults in low- and middle-income countries, 2006–2011

Source: Use of antiretroviral medicines by December 2011 based on the WHO survey in low- and middle-income countries (77).

Global update on HIV treatment 2013. WHO

Tanzania: 3% HIV and 17% HIV/HBV on TDF regimen Hawkins IAC 2012

Liver Fibrosis by Transient Elastography and Virologic Outcomes After Introduction of Tenofovir in Lamivudine-Experienced Adults With HIV and Hepatitis B Virus Coinfection in Ghana

Stockdale, et al. Clin Infect Dis; 2015

Efficacy is never 100%

Factors associated with detectable HBV DNA

- On truvada based therapy at least 6 months
- Undetectable HIV RNA < 400 c/ml

	OR	95% CI	p-value
Age (per 10 yrs)	0.90	0.48, 1.69	0.74
HBeAg positive	12.06	3.73, 38.98	<0.0001
<95% adherent	2.52	1.16, 5.48	0.02
HAART <2 yrs	2.64	1.06, 6.54	0.04
$CD4 < 200 \text{ cells/mm}^3$	2.47	1.06, 5.73	0.04

Long term adherence is always a challenge

Prophylaxis Effect of TDF in Prevention of HBV Acquisition in HIV (+) Patients

- HIV infected; HBV uninfected MSM
- Patients were serologically evaluated for HBV infection stratified by NRTI-ART

Frequency and Hazard Ratio of HBV Incident Infection

ART	Observation Period (Person-Years)	Incident Infection	HR (95% CI)	P-Value
No ART	446	30	1	
Other ART	114	6	.924 (.381-2.239)	.861
ART containing (LAM, TDF, or FTC)	1047	7	.113 (1.049261)	<.001
LAM-ART	814	7		
TDF-ART	233	0		

TDF containing ART resulted in zero HBV infections¹

Statistically longer HBV-free survival with TDF compared to 3TC or no treatment $(p = 0.004 \text{ and } 0.001)^2$

^{1.} Gatanama, H, et al., CID 2013:56 June 15

³¹

Renal impairment with TDF

 240 patients with a 3year-time follow-up, normal eGFR at baseline1

Figure 1: MDRD clearance over time

 >400 HIV+ patients receiving TDF

Strategies when TDF is contra-indicated?

- Switch to Entecavir (caution if LAM-R)
- Switch to Tenofovor Alafenamide

TAF HBV Phase 3 Program

Two phase 3, randomised, double-blind studies

- Primary endpoint (non inferiority margin of 10%):
 - HBV DNA <29 IU/mL at Week 48
- Key secondary endpoints
 - ALT normalisation at Week 48
 - Renal parameters and bone mineral density at Week 48
- 95% retention rate through Week 48
- Inclusion criteria: HBV DNA ≥20,000 IU/mL; ALT >60 U/L (males), >38 U/L (females), eGFR_{CG} >50 mL/min

Antiviral Efficacy of TAF and TDF at Week 72

- HBV DNA suppression rates were lower in HBeAg+ vs HBeAg- patients
- No significant difference between TAF and TDF
- No resistance was detected through 48 weeks

TAF in co-infected patients

(Galant et al, IAS 2015 WELBPE13)

Burden of HCV in HIV populations

HIV/HCV — double-trouble for the liver

Figure 1 | Driving factors underlying liver disease pathogenesis in HCV–HIV co-infection. HIV infection leads to an impaired immune response against HCV, increased HCV replication, hepatic inflammation and apoptosis, increased microbial translocation from the gastrointestinal tract and increased fibrosis.

Chen J Nat Rev Gastroenterol Hep 2014 doi:10.1038/nrgastro.2014.17

Faster progression even when controlling for alcohol and other co-morbidities

Figure 3. Liver fibrosis and age among persons coinfected with HIV and HCV (dashed line) and those with only HCV (solid line)

HIV/HCV – a contribution to multiple organ dysfunction

Overall and Liver-related Mortality - effect of HAART

A) Overall-Mortality

Patients under observation:

HAART-group:	93	79	33	-	-	-
ART-group:	55	46	30	15	9	1
Untreated-group:	13794	49	37	32	27	

B) Liver-related-Mortality

HAAKI-group:	93	79	33	-	-	-
ART-group:	55	46	30	15	9	1
Untreated-group:	13794	49	37	32	27	

SVR in HIV/HCV co-infected patients with mild Fibrosis

A total of 695 HIV/HCV-co-infected patients were treated with IFN/RBV after a median follow-up of 4.9 y ∋ars. 274 patients ε chieved an SVR

The achievement of an SVR after interferon-ribavirin therapy in patients co-infected with HIV/HCV and with mild Fibrosis reduces liver-related complications and mortality

Current DAAs

Not All Direct-Acting Antivirals are Created Equal

Characteristic	Protease Inhibitor*	Protease Inhibitor**	NS5A Inhibitor	Nuc Polymerase Inhibitor	Non-Nuc Polymerase Inhibitor
Resistance profile					
Pangenotypic efficacy					
Antiviral potency					
Adverse events					

^{*}First generation. **Second generation.

Do HIV+ respond differently to mono-infected patients?

Drug-drug Interactions

НС	V drugs	ATV/c	ATV/r	DRV/c	DRV/r	LPV/r	EFV	ETV	NVP	RPV	MVC	DTG	EVG/c	RAL	ABC	FTC	3TC	TAF	TDF	ZDV
	daclatasvir	↑	↑110%	1	↑41%	↑15%	↓32% ⁱⁱ	\	↓	\leftrightarrow	\leftrightarrow	E33%	↑ i	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↑10% E10%	\leftrightarrow
	elbasvir/ grazoprevir	1	↑	1	1	↑	↓54/83%	↓	↓	\leftrightarrow	\leftrightarrow	\leftrightarrow	1	E43%	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↓7/14% E34%	\leftrightarrow
	glecaprevir/ pibrentasvir	1	↑553/64%	1	↑397%/-	↑338/146%	\	\	↓	E84%	Е	\leftrightarrow	↑205/57% E47%	E47%	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	E29%	\leftrightarrow
	parita- previr/r/ ombitasvir/ dasabuvir	1	↑94%	↑	Div	1	vi	ţΕ	ţΕ	E ^{vii}	E	\leftrightarrow	1	E134%	\leftrightarrow	\leftrightarrow	\leftrightarrow	E	\leftrightarrow	\leftrightarrow
DAAs	paritaprev- ir/r/ombi- tasvir	1	↑ ⁱⁱⁱ	1	↑ ^v	↑	vi	ţΕ	ţΕ	E ^{vii}	Е	\leftrightarrow	1	E20%	\leftrightarrow	\leftrightarrow	\leftrightarrow	E	\leftrightarrow	\leftrightarrow
DA	simeprevir	1	1	1	1	1	↓71%	\	↓	↑6% E12%	\leftrightarrow	\leftrightarrow	1	↓11% E8%	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↓14% Ě18%	\leftrightarrow
	sofosbuvir/ ledipasvir	↑ ^{viii}	↑8/113% ^{viii}	↑viii	↑34/ 39%viii	↔ ^{viii}	↓-/34%	\leftrightarrow	\leftrightarrow	↔ ^{Viii}	Е	\leftrightarrow	↑36/ 78%E ^{viii}	D≈20%	\leftrightarrow	\leftrightarrow	\leftrightarrow	E32%	Eviii	\leftrightarrow
	sofosbuvir/ velpatasvir	↔ ^{viii}	↑-/142% ^{VIII}	↔ ^{Viii}	↓28%/- ^{viii}	↓29%/- ^{viii}	↓-/53%	\	↓	\leftrightarrow	Е	\leftrightarrow	↑viii	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	Eviii	\leftrightarrow
	sofosbuvir/ velpatasvir/ voxilaprevir	1	†40/93/331%	↑viii	↑-/- /143% ^{viii}	1	\	\	↓	\leftrightarrow	E	\leftrightarrow	↑-/-/171% viii	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	Eviii	\leftrightarrow
	sofosbuvir	\leftrightarrow	\leftrightarrow	1	↑34%	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	↓5%D27%	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow

EASL HCV recommendations

Same treatment regimens can be used in HIV/HCV patients as in patients without HIV infection, as the virological results of therapy are identical (A1)

EACS HCV recommendations – treatment combination options (2018)

HCV GT	Treatment regimen	Treatment duration	a & RBV usage		
		Non-cirrhotic	Compensated cirrhotic	Decompensated cirrhotics CTP clas	
1 & 4	SOF/LDV +/- RBV	8 weeks without RBV ⁽ⁱⁱ⁾	12 weeks with RBV		
	EBR/GZR	12 weeks ^(vi)	_	Not recommended	
	GLE/PIB	8 weeks	12 weeks	Not recommended	
	SOF/VEL	12 weeks		12 weeks with RBV	
	SOF + SMP +/- RBV	GT 4 only: 12 weeks with RBV or 24 we	eks without RBV"	Not recommended	
	SOF + DCV +/- RBV	12 weeks +/- RBV ⁽ⁱⁱⁱ⁾	12 weeks with RBV ^{((v)}		
	SOF/VEL/VOX	8 weeks(viii)	12 weeks	Not recommended	
	OBV/PTV/r + DSV	8"'-12 weeks in GT 1b	12 weeks in GT 1b	Not recommended	
	OBV/PTV/r + DSV + RBV	12 weeks in GT 1a	24 weeks in GT 1a	Not recommended	
	OBV/PTV/r + RBV	12 weeks in (Not recommended	
2					
	SOF/VEL	12 v	12 weeks with RBV		
	GLE/PIB	8 weeks	12 weeks	Not recommended	
	SOF/VEL/VOX	8 weeks(viii)	12 weeks	Not recommended	
	SOF + DCV	12 weeks		12 weeks with RBV	
3	SOF/VEL/VOX	8 weeks(viii)	12 weeks	Not recommende	
	GLE/PIB	8 weeks ^(ix)	12 weeks ^(IX)	Not recommended	
	SOF + DCV +/- RBV	12 weeks +/- RBV ^(vii) or 24 weeks withou RBV	t 24 weeks wit	h RBV	
	SOF/VEL +/- RBV	12 weeks +/- RBV ^(vii) or 24 weeks withou	ut RBV 12 weeks with RE	3V 24 weeks with RBV	
5 & 6	SOF/LDV +/- RBV	12 weeks +/- RBV (i)	12 weeks with RBV ^(iv)		
	SOF/VEL	12 v	12 weeks with RBV		
	GLE/PIB	8 weeks	12 weeks	Not recommended	
	SOF/VEL/VOX	8 weeks ^(viii)	12 weeks	Not recommended	
	SOF + DCV +/- RBV	12 weeks +/- RBV or 24 weeks without RBV()	12 weeks with RBV ^(iv)		

Are there remaining 'unresolved' issues with HCV?

- Is 'shorter' therapy possible for co-infected patients wit acute/early HCV?
- Is it ever 'too late' to treat HCV?
 - ESLD Rx vs. Transplant followed by Rx
- Will TasP work?
- Will we be able to 'eliminate' HCV by 2030?

Short duration DAAs for Acute/Early HCV

Direct acting antiviral therapy for acute HCV

	HIV+	HIV-	HCV genotype	Regimen	Duration (weeks)	Number of patients	SVR
Naggie et al. CID 2017	Х		1	Sofosbuvir + ribavirin	12	17	59%
El Sayed et al. HIVCT 2017	Х		1	Sofosbuvir + ribavirin	12	12	92%
Martinello et al. Hepatology 2016	Х	Х	1+3	Sofosbuvir + ribavirin	6	13+6	32%
Deterding et al. Lancet ID 2017		Х	1	Sofosbuvir + ledipasvir	6	20	100%
Rockstroh et al. Lancet GE 2017	Х		1+4	Sofosbuvir + ledipasvir	6	19+7	77%
Naggie et al. AASLD 2017	Х		1	Sofosbuvir + ledipasvir	8	27	100%
Fierer et al. EASL 2017	Х		1+4	Sofosbuvir + ledipasvir	8	20+1	100%
Martinello et al AASLD 2017	х	х	1	Paritaprevir/ritonavir/ombitasvir + dasabuvir + ribavirin	8	30	96%
DAHHS 2 NCT02600325	x	x	1+4	Grazoprevir + elbasvir (GZR/EBR)	8	80	98%

Algorithm for Management of Acute HCV in Persons with HCV/HIV Co-infection

Treatment As Prevention in HIV/HCV

N Martin, et al 2015 (manuscript submitted)

Substantial decline in Acute HCV post DAA rollout in the Netherlands

Study hypothesis:

Unrestricted DAA access will result in a decrease in the number of new HCV infections in HIV+MSM

- By 2017, 742/971 (76%) HIV+ MSM patients treated for HCV
 - 50% 2014, 65% 2016, treated Acute HCV in the early phase via clinical trials (DAHHS 1 and 2 studies)

Substantial decline in Acute HCV post DAA rollout in the Netherlands

<u> 2014</u>

A-HCV n = 93

PYFU n = 8290

11.2/1000 PYFU (95% CI 9-14)

1.1% per year

<u>2016</u>

A-HCV n = 49

PYFU n = 8961

5.5/1000 PYFU (95% CI 4–7)

0,55% per year

IRR 0.49 (95% CI 0.34 - 0.69)

Jan-Dec 2014 11.2/1000

Jan-Jun 2016 6.9/1000

July-Dec 2016 4.0/1000

Decline NOT associated with reduction in riskbehaviour

What about syphilis in MSM at public health STD clinics:

First six months of 2015:

N=446 syphilis infections diagnosed

First 6 months of 2016:

N=629 syphilis infections diagnosed (=41% increase ! 95% in MSM)

Syphilis in HIV+MSM

What is NAFLD?

- Non-Alcoholic Fatty Liver Disease
- Wide disease range from simple steatosis to cirrhosis

NAFLD: Potential consequences

The molecular engine that drives disease progression

NAFLD IN HIV INFECTED PATIENTS

Study	country	n subjects	Steatosis assessment	Prevalence of NAFLD
Hadigan, C 2007 JAIDS	USA	33	MR spectrometry	42%
Mohammed, SS 2007 JAIDS	Canada	26	Liver Biopsy	45%
Guaraldi, G 2008 CID	Italy	225	СТ	37%
Crum Cianflone, P 2009 JAIDS	USA	216	Ultrasound	31%
Ingiliz, P 2009 Hepatol	France	30	Liver Biopsy	60%
Nishijima, T 2014 PlosOne	Japan	435	Ultrasound	31%
Price, JC 2014 Am J Gastro	USA	465 HIV and HIV HCV	СТ	15%
Juan, M 2014 AIDS	Spain	505 HIV HCV/HBV	CAP TM	40%

Appropriate End-points for therapeutics in NAFLD

- Early phase trials
 - Populations with NASH or at high-risk of NASH
 - Primary end-points based on mechanism of drug tested; e.g. reduction in hepatic fat by MR-Proton Density Fat Fraction, CAP
- Phase 3 studies
 - Biopsy proven NASH (NAS score >2) with F2+ fibrosis
 - Primary End-point
 - Complete resolution of steatohepatitis and no worsening of fibrosis
 - At least one point improvement in Fibrosis score with no worsening of steatohepatitis

Therapeutics for NASH

Metabolic abnormalities

Cell-stress/apoptosis and inflammation

Antifibrotics

Gut-Liver axis

What works and what doesn't work – data to date...

- Diet/exercise
 - 5% weight loss improves steatosis
 - 7% improvement in inflammation
 - >10% for improvement in fibrosis
- Insulin sensitising agents
 - Glitazones/Metformin ?effective in pre-diabetics/T2DM
- Anti-lipid therapies
 - Fibrates, statins may improve lipids BUT no/little effect on hepatic inflammation/fibrosis
- Anti-oxidants
 - Vitamin E works (but risk of Prostate cancer??)

NAFLD Pipeline

Conclusions

- Liver disease remains an important cause of morbidity and mortality in HIV+
- Key issues = cART, HBV, HCV and lifestyle
- HBV key issues diagnosis and management
- HCV
 - DAAs for all generic preparations available
 - Responses in HIV+ similar to HIV-
 - Beware DDIs
- Need for improved cascade of care and access to Rx 'Micro-elimination' a realistic goal
- NAFLD increasingly recognised
 - Managing cardiovascular risk is the key issue
 - Small number progressive liver damage