

EACS HIV Summer School 2018

Plenary 6: p-values and hypothesis testing

Valentina Cambiano

UCL Institute of Global Health 31st August 2018

Conflict of Interests

No conflict of interests to declare.

Outline

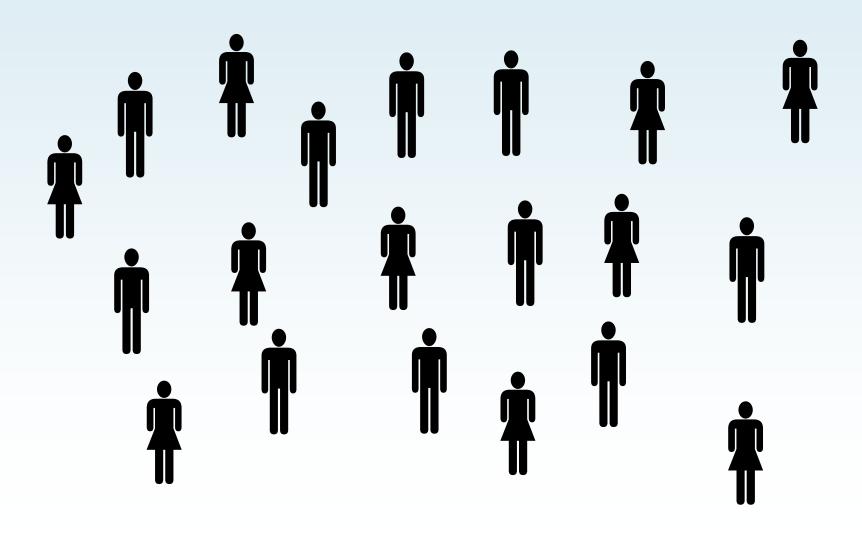
- The role of chance
- Defining and interpreting p-values
- Commonly used hypothesis tests
- Limitations of p-values

Outline

- The role of chance
- Defining and interpreting p-values
- Commonly used hypothesis tests
- Limitations of p-values

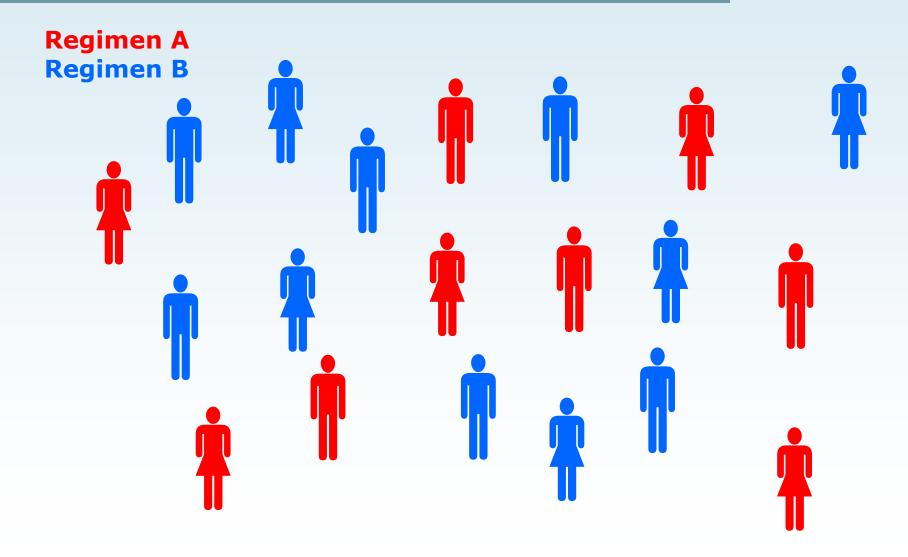
Hypothesis tests – background

- Presentations of data in the medical world are littered with p-values - 'p<0.05'. It is thought to be a magical phrase, guaranteed to ensure that your paper will be published
- But what do these p-values really tell us, and is a P-value <0.05 really that important?

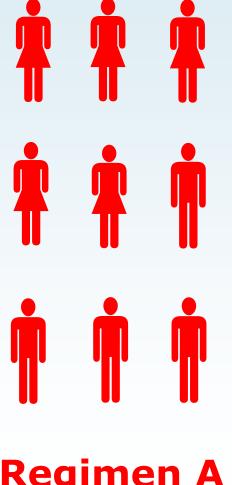


Example – baseline imbalance in trials

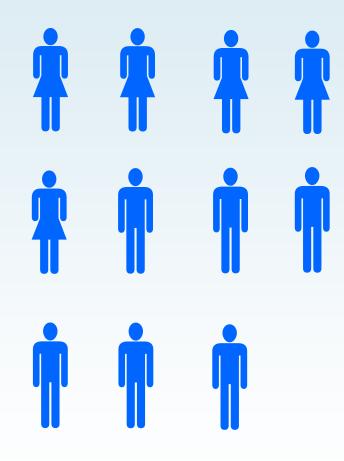
- Imagine 20 participants in a trial, 50% of whom are female
- We randomise the group in a 1:1 manner to receive one of two regimens, A (red) or B (blue)
- We should end up with approximately 10 patients allocated to regimen A and 10 patients to regimen
- What happens in practice?



20 trial participants



20 trial participants



20 trial participants

Regimen A

Regimen B

	Regimo	Overall			
	Α		В		
Trial number	N	N (%) female	N	N (%) female	N
1	9	5 (55.6)	11	5 (45.5)	20

	Regim	en		Overall	
	Α		В		
Trial number	N	N (%) female	N	N (%) female	N
1	9	5 (55.6)	11	5 (45.5)	20
2	10	5 (50.0)	10	5 (50.0)	20
3	7	3 (42.9)	13	7 (53.8)	20
4	15	7 (46.7)	5	3 (60.0)	20
5	8	5 (62.5)	12	5 (41.7)	20
6	8	4 (50.0)	12	6 (50.0)	20
7	10	5 (50.0)	10	5 (50.0)	20
8	10	6 (60.0)	10	4 (40.0)	20
9	11	7 (63.6)	9	3 (33.3)	20
10	10	3 (30.0)	10	7 (70.0)	20

	Regim		Overall		
	Α		В		
Trial number	N	N (%) female	N	N (%) female	N
1	9	5 (55.6)	11	5 (45.5)	20
2	10	5 (50.0)	10	5 (50.0)	20
3	7	3 (42.9)	13	7 (53.8)	20
4	15	7 (46.7)	5	3 (60.0)	20
5	8	5 (62.5)	12	5 (41.7)	20
6	8	4 (50.0)	12	6 (50.0)	20
7	10	5 (50.0)	10	5 (50.0)	20
8	10	6 (60.0)	10	4 (40.0)	20
9	11	7 (63.6)	9	3 (33.3)	20
10	10	3 (30.0)	10	7 (70.0)	20

	Regimen				
	Α		В		
Trial number	N	N (%) female	N	N (%) female	N
1	9	5 (55.6)	11	5 (45.5)	20
2	10	5 (50.0)	10	5 (50.0)	20
3	7	3 (42.9)	13	7 (53.8)	20
4	15	7 (46.7)	5	3 (60.0)	20
5	8	5 (62.5)	12	5 (41.7)	20
6	8	4 (50.0)	12	6 (50.0)	20
7	10	5 (50.0)	10	5 (50.0)	20
8	10	6 (60.0)	10	4 (40.0)	20
9	11	7 (63.6)	9	3 (33.3)	20
10	10	3 (30.0)	10	7 (70.0)	20

	Regimen				
	Α		В		-
Trial number	N	N (%) female	N	N (%) female	N
1	54	28 (51.9)	46	22 (47.8)	100
2	53	24 (45.3)	47	26 (55.3)	100
3	61	30 (49.2)	39	20 (51.3)	100
4	51	25 (49.0)	49	25 (51.0)	100
5	57	29 (50.9)	43	21 (48.8)	100
6	50	24 (48.0)	50	26 (52.0)	100
7	51	22 (43.1)	49	28 (57.1)	100
8	54	30 (55.6)	46	20 (43.5)	100
9	57	28 (49.1)	43	22 (51.2)	100
10	47	20 (42.6)	53	30 (56.6)	100

The role of 'chance'

- So even if we randomly subdivide patients into two groups, their characteristics may be imbalanced
- The size of the imbalance generally gets smaller as the trial increases in size
- Random baseline covariate imbalance is not usually a problem in a trial (unless it is big) as statistical methods can deal with this
- However, if we are describing outcomes rather than baseline covariates, then there is more cause for concern

Trial participants - % viral load <50 cps/ml

	Regimen					
	Α		В			
Trial number	N	N (%) VL<50 copies/ml	N	N (%) VL<50 copies/ml		
1	54	28 (51.9)	46	22 (47.8)		
2	53	24 (45.3)	47	26 (55.3)		
3	61	30 (49.2)	39	20 (51.3)		
4	51	25 (49.0)	49	25 (51.0)		
5	57	29 (50.9)	1	21 (48.8)		
6	50	24 (48.0)	50	26 (52.0)		
7	51	22 (43.1)	49	28 (57.1)		
8	54	30 (55.6)	46	20 (43.5)		
9	57	28 (49.1)	43	22 (51.2)		
10	47	20 (42.6)	53	30 (56.6)		

Trial participants - % viral load <50 cps/ml

	Regimen						
	Α		В				
Trial number	N	N (%) VL<50 copies/ml	N	N (%) VL<50 copies/ml			
1	54	28 (51.9)	46	22 (47.8)			
2	53	24 (45.3)	47	26 (55.3)			
3	61	30 (49.2)	39	20 (51.3)			
4	51	25 (49.0)	49	25 (51.0)			
5	57	29 (50.9)	43	21 (48.8)			
6	50	24 (48.0)	50	26 (52.0)			
7	51	22 (43.1)	49	28 (57.1)			
8	54	30 (55.6)	46	20 (43.5)			
9	57	28 (49.1)	43	22 (51.2)			
10	47	20 (42.6)	53	30 (56.6)			

Trial participants - % viral load <50 cps/ml

	Regin	nen			
	Α		В		
Trial number	N	N (%) VL<50 copies/ml	N	N (%) VL<50 copies/ml	
1	54	28 (51.9)	46	22 (47.8)	
2	53	24 (45.3)	47	26 (55.3)	
3	61	30 (49.2)	39	20 (51.3)	
4	51	25 (49.0)	49	25 (51.0)	
5	57	29 (50.9)	43	21 (48.8)	
6	50	24 (48.0)	50	26 (52.0)	
7	51	22 (43.1)	49	28 (57.1) 14% difference	e in
8	54	30 (55.6)	46	20 (43.5) Outcome	
9	57	28 (49.1)	43	22 (51.2)	
10	47	20 (42.6)	53	30 (56.6)	

Outline

- The role of chance
- Defining and interpreting p-values
- Commonly used hypothesis tests
- Limitations of p-values

The general approach to hypothesis testing

- Investigator may want to conduct a study to address a certain theory (study hypothesis)
 - e.g. % viral load <50 cps/ml is higher in people receiving regimen B compared to regimen A
- 1. Start by defining two hypotheses:
 - Null hypothesis (H_0) : There is no real difference in viral load response rates between the two regimens
 - Alternative hypothesis (H₁): There is a real difference in viral load response rates between the two regimens

Null hypothesis (H0)

- E.G. The difference in % viral load <50 cps/ml between the population receiving regimen A and regimen B is 0%
- Can't look at whole population who could receive regimen A and B!!
- Use a sample to make inferences about wider population
- Is there any evidence from our sample against the null hypothesis?

The general approach to hypothesis testing

- 1. Definition of two hypotheses
- 2. Conduct trial and collect data
- 3. Use data from that trial (sample) to calculate a test statistic (e.g. Chi-squared test, t-test, ANOVA). Type of test statistic depends upon type of data (e.g. quantitative or categorical)
- 4. Test statistic can then be 'looked up' in tables and a p-value obtained

What is the *P*-value?

- **p-value:** probability of obtaining an effect at least as big as that observed if the null hypothesis is true (i.e. there is no real effect)
- Large p-value
 - Insufficient evidence that effect is real
- Small p-value
 - Evidence that effect is real

What is large and what is small?

By convention:

P<0.05 - SMALL

P>0.05 - LARGE

Outline

- The role of chance
- Defining and interpreting p-values
- Commonly used hypothesis tests
- Limitations of p-values

Choosing the right hypothesis test

All statistical tests will generate a *P*-value - the choice of statistical test will be based on a number of factors, including:

- The hypothesis being studied
- The variables of particular interest
- The distribution of their values
- The number of individuals who will be included in the analysis
- The number of 'groups' being studied
- The relationship (if any) between these groups

Choosing the right hypothesis test

Tests that may be used (a small selection):

Comparing proportions

- Chi-squared test
- Chi-squared test for trend
- Fisher's exact test

Comparing numbers

- Unpaired *t*-test
- Paired *t*-test
- Mann-Whitney U test
- ANOVA
- Kruskal-Wallis test

Example – the Chi-squared test

- Two groups
- Interested in whether the proportion of individuals with an outcome differs between these groups
- Measurement of interest is categorical
- Can draw up a table of responses in the groups
- Expected numbers in each cell of the table are
 >5

Example – Define hypotheses

We wish to know whether patients receiving a new treatment regimen (B) are more/less likely to achieve viral load suppression than those receiving standard-of-care (A)

Hypotheses:

 H_0 : There is **no** real difference in the proportion of patients with a VL \leq 50 copies/ml between those receiving regimen A and those receiving regimen B

 H_1 : There is a real difference in the proportion of patients with a $VL \leq 50$ copies/ml between those receiving regimen A and those receiving regimen B

Example – Collect data

	VL <u><</u> 50 copies/ml	VL >50 copies/ml	Total
Regimen	N (%)	N (%)	N (%)
A	28 (52)	26 (48)	54 (100)
В	22 (48)	24 (52)	46 (100)
Total	50 (50)	50 (50)	100 (100)

Example – Interpret *P*-value

- p-value associated with this test value = 0.84
- If there really was no difference in viral load response between the two groups, and we repeated the study 100 times, we would have observed a difference of this size (or greater) on 84 of the 100 occasions
- So we would conclude that there is insufficient evidence of a real difference in viral load response rates between the two regimens

Points to note

- We have not <u>proven</u> that the difference <u>was</u> due to chance, just that there was a reasonable probability that it <u>might have been</u>
- We can never prove the null hypothesis
- We take an 'innocent until proven guilty' approach

Outline

- The role of chance
- Defining and interpreting p-values
- Commonly used hypothesis tests
- Limitations of p-values

Limitation of p-values

- Although p-values are helpful in telling us which effects are likely to be real, they also suffer from limitations
- An estimate of the size of the effect and its corresponding confidence interval provides complementary information
- The limitations of p-values, as well as the use of confidence intervals, will be seen in the next session