Why is research important?

Prof Paddy Mallon

UCD HIV Molecular Research Group

Professor of Microbial Diseases
UCD School of Medicine

paddy.mallon@ucd.ie

Scoil an Leighis agus Eolaíocht An Leighis UCD

Disclosures

Funding in form of grants, honoraria, speaker fees, travel and conference support from:

- Gilead Sciences
- ViiV Healthcare
- Janssen
- GlaxoSmithKline
- Bristol Myers Squibb
- Merck Sharpe & Dohme
- Health Research Board
- Wellcome Trust
- National Institutes of Health (US)
- European Union Horizon 2020

Sir William Osler 1849-1919

Founder of Johns Hopkins

Regius Professor of Medicine at Oxford

'Father of Modern Medicine'

'The value of experience is not in seeing much but in seeing wisely'

Why always ask why?

The practice of medicine is continually evolving

- New drugs, new indications, new drug consequences

The population is continually changing

- Ageing, obesity, population shifts

Diseases continually evolving

- New manifestations as people age

ALWAYS BE VIGILENT! KEEP AN OPEN MIND

'The effective, most vitalizing work of the world is done between the ages of 25 and 40..'

William Osler

Research pathway for clinical discovery

Define / describe the clinical observation

Model associations with the observation

Elaborate associations into potential mechanisms

Investigate mechanisms (in vitro / translational)

Validate mechanisms (clinical studies / clinical trials)

Change / modify practice

Research pathway for clinical discovery

Define / describe the clinical observation

Model associations with the observation

Elaborate associations into potential mechanisms

Investigate mechanisms (in vitro / translational)

Validate mechanisms (clinical studies / clinical trials)

Change / modify practice

The Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) Study

Research pathway for clinical discovery

Define / describe the clinical observation

Model associations with the observation

Elaborate associations into potential mechanisms

Investigate mechanisms (in vitro / translational)

Validate mechanisms (clinical studies / clinical trials)

Translational research

- Most modern medical research is 'translational'
- 'From bench to bedside' vice versa!
- 'Omics' and bioinformatics
 - Genetics, genomics, proteomics, microbiome, epigenetics, functional assays
 - 'Systems biology'
- Learn to collaborate and learn from your mistakes!
- Helicobacter pylori
 - Robin Warren
 - Barry Marshall

Cardiovascular events: Do drugs matter?

D.A.D: MI risk is associated with <u>recent</u> and/or <u>cumulative</u> exposure to specific NRTIs and PIs

Platelet activation and abacavir

Switching from Lamivudine/Abacavir (3TC/ABC) to Emtricitabine/Tenofovir DF (FTC/TDF) Based Regimen (SWIFT)Study

Platelet Biology Sub-study

O'Halloran JA¹, Dunne E², Tinago W¹, Denieffe S¹, Kenny D², Mallon PWG¹

¹HIV Molecular Research Group, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland, ² Cardiovascular Biology Group, Royal College of Surgeons in Ireland, Dublin, Ireland

HIV and CVD - role of abacavir

No between-group differences in sP-selectin from baseline to 48 weeks (p=0.37)

sGPVI increased to week 48 in those who switched to TDF/FTC (effect size +0.012 (95%CI 0.0041, 0.02), between group p=0.002.

GPVI and **CVD**

Study 1717 - Phase 3, randomized, double-blind, active-controlled study

Abacavir, GPVI and CVD

Higher collagen EC₅₀ (i.e., less reactive platelets) in TAF/FTC group at both Weeks 4 and 12

Similar results seen with TRAP and ADP but not with Epinephrine or Arachidonic Acid

Research pathway for clinical discovery

Define / describe the clinical observation

Model associations with the observation

Elaborate associations into potential mechanisms

Investigate mechanisms (in vitro / translational)

Validate mechanisms (clinical studies / clinical trials)

Change / modify practice

Research pathway for clinical discovery

- Different research questions suit different parts of pathway:
 - Modelling cohort studies
 - Mechanisms in vitro / translational studies
 - Validate mechanisms pilot clinical trials
- Different study designs suit different research questions
- A well thought research question forms the basis of a robust study

'The best preparation for tomorrow is to do today's work superbly well.'

William Osler

The research pathway...

Research Idea **Study Concept Pilot Study (optional) Funding Proposal** Study Protocol **Analysis Plan Dissemination** (Presentation / Manuscript)

Pathway to researching a new therapy

Different research questions suit different parts of pathway:

- Modelling Cohort studies
- Mechanisms in vitro / translational studies
- Validate mechanisms pilot clinical trials

Different study designs suit different research questions

A well thought research question forms the basis of a robust study

Identifying the research question...

It is important to have a clear question before starting to design your study

This will allow you to make the most appropriate decisions surrounding:

- The study population
- The choice of study design
- The method of collecting data
- The primary outcome of interest
- The main exposure/predictors of interest (if applicable)
- The number of patients to be recruited

QUESTION:

Do people who see more doctors end up with worse outcomes?

Is this a clearly defined question?

QUESTION:

Do people who see more doctors end up with worse outcomes?

Think about three main factors:

- the **population**
- the intervention / exposure
- the outcome

QUESTION:

Do people who see more doctors end up with worse outcomes?

The Population

How do we define 'people'?

QUESTION:

Do people who see more doctors end up with worse outcomes?

The Population

How do we define 'people'?

- General population
- Specific disease populations
- Specific demographics; age, gender, ethnicity
- Use of specific therapies

QUESTION:

Do people who see more doctors end up with worse outcomes?

The Intervention / exposure

How do we define 'seeing more doctors'?

QUESTION:

Do people who see more doctors end up with worse outcomes?

The Intervention / exposure

How do we define 'seeing more doctors'?

- Different specialists / conditions
- Single vs multiple doctors within a clinic
- Same condition but different clinics

QUESTION:

Do people who see more doctors end up with worse outcomes?

The outcome:

How do we define 'worse outcomes'?

QUESTION:

Do people who see more doctors end up with worse outcomes?

The outcome:

How do we define 'worse outcomes'?

- Increase in CD4 count?
- Viral load suppression?
- Improvement in clinical outcome?
- Improvement in survival?
- Some other measure?

QUESTION:

Do people who see more doctors end up with worse outcomes?

QUESTION:

Do elderly (>70 years), Irish, female patients with metabolic syndrome and first presentation of TIA who have standard, multi-specialist (endocrinology, cardiovascular, gerontology) care have higher one-year mortality compared to those receiving integrated (endocrinology, cardiovascular, gerontology) guideline-driven, single centre specialist care within a metabolic clinic?

Research questions and hypotheses:

START study

'..among asymptomatic participants with a CD4+ count greater than 500 cells/mm3, immediate use of ART that results in suppression of HIV RNA levels and increases in CD4+ cell counts and potentially other beneficial effects will delay the development of AIDS*, non-AIDS, and death from any cause.'

The research question should be...

Clear

Unambiguous

Measurable

Of clinical / biological relevance

Realistic within the resource setting

DON'T BE TOO FOCUSED.

The more focused the less the answer will mean to the wider patient population

Keeping it real!!

Study subjects should be representative of the population to which the results will be generalized - 'real world'

The more detailed you make the research question the greater the risk that you will lose relevance

Balance study design to retain IMPACT!

What to do with your research question?

Make sure it hasn't already been answered!!

- Colleagues
- PubMED / Google

Design your research question

- Hypothesis, hypothesis, hypothesis......

Determine if you are able to answer the question

- Do you have the resources?
- Do you have the correct population?
- Do you have the time?

What to do with your research question?

DESIGN THE RIGHT STUDY TO ANSWER YOUR QUESTION

Choosing the right study design

Caroline Sabin

Professor of Medical Statistics and Epidemiology Institute for Global Health

Conflicts of interest

I have received funding for the membership of Data Safety and Monitoring Boards, Advisory Boards and for the preparation of educational materials from:

- Gilead Sciences
- ViiV Healthcare
- Janssen-Cilag

Main types of study design

Randomised controlled trial (RCT)

Cohort study

Case-control study

Cross-sectional study

Case series/case note review

'Expert' opinion

Experimental vs. Observational

Experimental study

Investigator intervenes in the care of the patient in a pre-planned, experimental way and records the outcome

Observational study

Investigator does not intervene in the care of a patient in any way, other than what is routine clinical care; investigator simply records what happens

Cross-sectional vs. Longitudinal

Cross-sectional study

Patients are studied at a single time-point only (e.g. patients are surveyed on a single day, patients are interviewed at the start of therapy)

Longitudinal study

Patients are followed over a **period of time** (days, months, years...)

UCL

Assessing causality (Bradford Hill criteria)

- Cause should precede effect
- Association should be plausible (i.e. biologically sensible)
- Results from different studies should be consistent
- Association should be strong
- Should be a dose-response relationship between the cause and effect
- Removal of cause should reduce risk of the effect

Incidence vs. prevalence

Incidence: proportion of patients without the event of interest who develop the event over the study period

- Can only estimate from a longitudinal study
- Must exclude those who have the event at start of study from the calculation

Prevalence: proportion of all patients in study who have the event at a particular point in time

- Can estimate prevalence from longitudinal or cross-sectional studies
- Generally include all patients in calculation

Randomised controlled trials (RCTs)

- Experimental and longitudinal
- Comparative comparison of two or more treatment strategies (e.g. new regimen vs. existing regimen)
- Control group allows us to conclude that any improvement in outcome is due to the test treatment rather than some other factor
- Where no existing regimen exists, control group may consist of untreated patients (usually receive a placebo)

Randomised controlled trials (RCTs)

- Subjects allocated to treatment groups by process known as randomisation
- Ensures that treatment groups are similar at start of trial; any differences are due to chance only
- Randomisation is most important feature of a RCT and is why RCTs are perceived to be the gold-standard approach to obtaining evidence of a treatment effect
- If you can randomise you should however,
 randomisation is not always possible or feasible

Types of RCTs

- Parallel group: each patient is randomised to receive only one of the two different strategies
- Crossover trial: each patient receives first one treatment strategy then the other, but the treatment order is randomised
- Cluster randomised: each 'cluster' of patients (GP surgeries, outpatient clinics) randomised to receive one of the two different treatment strategies

Parallel design trials

Example – Parallel Group trial

- Trial evaluating when to start ART among HIV-positive individuals who are ART-naïve with CD4 count >500 cells/mm³
- Randomised to:
 - Initiate ART immediately following randomisation
 OR
 - Defer ART until CD4 count is <350 cells/mm³ or AIDS develops
- Endpoints: Serious AIDS, death from AIDS, serious non-AIDS and death not attributable to AIDS

Cross-over trials

Example – Crossover trial

- Safety and acceptability of Reality condom for MSM
- Sero-concordant couples randomised to:
 - Reality condoms for 6 weeks then latex condoms for 6 weeks
 - Latex condoms for 6 weeks then Reality condoms for 6 weeks
- Endpoints: frequency of slippage with removal, pain or discomfort on use, rectal bleeding, willingness to use in future

Crossover trial

- Crossover trials are particularly useful for short term outcomes in chronic conditions
- The treatment must be one that does not permanently alter the disease or condition under study
- The main limitation of a crossover trial is that the effect of the first treatment administered may carry over and alter subsequent responses

Cluster randomised trials

Example – Cluster randomised trial

- RCT of malaria prevention in Gambia
- 70 villages randomised to:
 - Long lasting insecticidal nets (LLIN)
 OR
 - LLIN + indoor residual spraying
- Endpoints:
 - incidence of clinical malaria assessed by passive case detection in >7,000 children
 - number of Anopheles gambiae sensu lato mosquitoes collected per light trap per night

Cohort studies

- Observational and longitudinal
- Follow a group of individuals over time to assess the incidence of a disease (or some other outcome)
- Can look at the effect of exposure to a number of factors of interest (potential risk factors) on the incidence of the outcome

Cohort studies

Open vs Closed

- Closed/Fixed cohorts
 - New patients unable to join study
 - Participant population is fixed at baseline.
 - People can only exit study (withdrawal, death)
- Open/Dynamic cohorts
 - People move in and out of the study.
 - New patients able to join

Traditional interval cohort

- Patients often seen at a study site (often different to their place of care) on regular occasions for 'study visits' (e.g. 6-monthly)
- Participants may complete questionnaire on their health since last visit, treatments received, etc.
- Laboratory tests performed at pre-defined time intervals – this information is unlikely to be available at intervening times or when an event occurs, unless this coincides with a study visit
- Patients must give consent to participate

Traditional interval cohort - example

- The Multicenter AIDS Cohort Study (MACS)
- HIV+ve and HIV-ve individuals from 4 centres in Baltimore, Chicago, Los Angeles and Pittsburgh
- Participants recruited from 1984-1985 (n=4954),
 1987-1991 (n=668) and 2001-2003 (n=1351)
- Visits are bi-annual at each visit, participants under go a detailed interview, physical examination, quality of life assessment and collection of blood for concomitant laboratory testing and storage

Observational databases

- Utilise data collected as part of patient's medical care
- Patient does not attend for a particular study visit
- Laboratory testing performed according to clinical need – will be more frequent if patient is ill or requires investigation
- Some data items may be difficult to collect if not part of routine care
- May or may not require patient consent
- Increasingly common with emergence of electronic record systems

Observational databases - example

- French Hospitals Database on HIV (FHDH)
- Hospital-based multicentre open cohort with inclusions since 1989
- Information on >120,000 patients (53% of French HIV+ population in care)
- Standardized variables collected at each outpatient visit/hospital admission (clinical conditions, treatments prescribed, laboratory tests) and/or at least every 6 months

Pros and cons of cohort studies

Advantages

- Can assess temporal relationship between exposure and disease (i.e. we know which event occurs first)
- Can make some attempt to assess cause and effect

Disadvantages

- If the disease is rare then cohort may have to be very large and follow-up long (i.e. expensive)
- May be problem with loss-to-follow-up
- Potential for bias due to confounding

Case-control studies

- Observational and longitudinal (retrospective)
- Group of patients with a disease (cases) are compared to group of patients without the disease (controls)
- Aim: has exposure to any factor occurred more or less frequently in the past in cases than in controls?
- Cases and controls may often be matched on basic demographic information (e.g. sex and age) to make the two groups as similar as possible

Case-control studies

Pros and cons of case-control studies

Advantages

- Relatively cheap, quick and easy to conduct
- No loss-to-follow-up
- Suitable for rare events

Disadvantages

- Potential for recall bias
- Timing of events cannot be reliably established therefore more difficult to assess causality
- Cannot assess incidence (proportion with disease is fixed as part of the study design)

Predictive factors for HIV seroconversion

Cases: Persons attending a Spanish HIV unit who seroconverted to HIV >3 months after their first visit following a specific risk of HIV (n=69)

Controls: Persons attending same unit after a risk of HIV who did not seroconvert, matched by gender, birthdate and date (n=69)

Variables: Demographics, serostatus of partner, exposure risk, previous PEP and STI, PEP regimen, previous HIV testing and presence of STI at baseline

Conclusions: Being MSM, having had previous PEP, an HIV-positive sexual partner and previous STI were all predictive factors for HIV seroconversion

Cross-sectional studies

- Carried out at a single point in time no follow-up
- Often used to assess the prevalence of a condition, to describe the current situation or to assess attitudes and beliefs
- Advantages relatively cheap and quick
- Disadvantages not possible to estimate incidence of disease, but can assess prevalence

Alcohol use in HIV+ve persons

- Cross-sectional study: 2230 HIV+ve patients in 3 primary care clinics in Pretoria
 - 25.1% reported hazardous or harmful drinking
 - - 2.0% had possible alcohol dependence
- In multivariable analyses, high-risk drinking associated with male gender, never being married, tobacco use, greater independence and more depressive symptoms
- Recommendation of routine screening for alcohol use and harm reduction interventions

Case series / case-note review

- Fairly low form of evidence but can provide useful preliminary data
- Useful as a descriptive tool i.e. to define the natural history of disease or to describe current practices
- No comparative element therefore not possible to show a link between exposure and disease
- Usually retrospective therefore potential for problems with historical data

Choosing an appropriate study design

- The hypotheses that can be tested in any study, particularly regarding 'cause and effect', will depend on the study design
- Some study designs may offer 'benefits' in terms of cost, time and administrative effort, but in general, studies that are quicker and cheaper to perform will provide weaker evidence
- Must have a clear idea of the hypotheses being tested before choosing the optimal study design

Research question

QUESTION:

Do elderly (>70 years), Irish, female patients with metabolic syndrome and first presentation of TIA who have standard, multi-specialist (endocrinology, cardiovascular, gerontology) care have higher one-year mortality compared to those receiving integrated (endocrinology, cardiovascular, gerontology) guideline-driven, single centre specialist care within a metabolic clinic?

Summary

- The hypotheses that can be tested in any study, particularly regarding 'cause and effect', will depend on the study design
- Some study designs may 'offer' benefits in terms of cost, time and administrative effort – these are likely to provide weaker evidence
- All studies involve the selection of a sample if the sample is not representative, the results of the study may be biased